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Standard approaches to the theory of financial markets are based
on equilibrium and efficiency. Here we develop an alternative
based on concepts and methods developed by biologists, in which
the wealth invested in a financial strategy is like the abundance
of a species. We study a toy model of a market consisting of
value investors, trend followers, and noise traders. We show that
the average returns of strategies are strongly density dependent;
that is, they depend on the wealth invested in each strategy
at any given time. In the absence of noise, the market would
slowly evolve toward an efficient equilibrium, but the statisti-
cal uncertainty in profitability (which is calibrated to match real
markets) makes this noisy and uncertain. Even in the long term,
the market spends extended periods of time away from perfect
efficiency. We show how core concepts from ecology, such as
the community matrix and food webs, give insight into market
behavior. For example, at the efficient equilibrium, all three strate-
gies have a mutualistic relationship, meaning that an increase
in the wealth of one increases the returns of the others. The
wealth dynamics of the market ecosystem explain how mar-
ket inefficiencies spontaneously occur and gives insight into the
origins of excess price volatility and deviations of prices from
fundamental values.

market ecology | market efficiency | agent-based modeling

Why do markets malfunction? According to the theory
of market efficiency, markets always function perfectly.

Prices always reflect fundamental values and change only when
new information affects fundamental values. Thus, by definition,
any problems with price setting are caused by factors outside
the market. Empirical evidence suggests otherwise. Large price
movements occur even when there is very little new informa-
tion (1), and prices often deviate substantially from fundamental
values (2). This means that we need to go beyond the the-
ory of market efficiency to understand how and why markets
malfunction.

Here we build on earlier work (3–7)∗ and develop the the-
ory of market ecology, which provides the necessary alternative.
This approach borrows concepts and methods from biology and
applies them to financial markets. Financial trading strategies
are analogous to biological species. Plants and animals are spe-
cialists that evolve to fill niches that provide food; similarly,
financial trading strategies are specialists that evolve to exploit
market inefficiencies. Trading strategies can be classified into
distinct categories, such as technical trading, value investing,
market making, statistical arbitrage, and many others. The cap-
ital invested in a strategy is like the population of a species.
Trading strategies interact with one another via price setting,
and the market evolves as the wealth invested in each strat-
egy changes through time, as regulations change, and as old
strategies fail and new strategies appear.

The theory of market ecology emerges from the inherent
contradictions in the theory of market efficiency. A standard
argument used to justify market efficiency is that competition
for profits by arbitrageurs should cause markets to rapidly evolve
to an equilibrium where it is not possible to make excess profits
based on publicly available information. But, if there are no prof-
its to be made, there are no incentives for arbitrageurs, so there

is no mechanism to make markets efficient. This paradox sug-
gests that, while markets may be efficient in some approximate
sense, they cannot be perfectly efficient (8). In contrast, under
the theory of market ecology, trading strategies exploit market
inefficiencies, but, as new strategies appear and as the wealth
invested in each strategy changes, the inefficiencies change as
well. To understand how the market functions, it is necessary
to understand how each strategy affects the market and how
the interactions between strategies cause market inefficiencies
to change with time. The theory of market ecology naturally
addresses a different set of problems than the theory of mar-
ket efficiency and can be viewed as a complement rather than
a substitute.

Our study here builds on a large body of work on agent-based
models of financial markets (e.g. refs. 9–12). The theory of mar-
ket ecology provides a conceptual framework for understanding
such models. Our goal is not to construct a better model of
financial markets, but rather to show how ideas from ecology
can be used to interpret market phenomena and predict market
behavior.

Here we study a stylized toy market model with three trading
strategies. We approach the problem in the same way that an
ecologist would study three interacting species. We study how the
average returns of the strategies depend on the wealth invested
in each strategy, how their wealth evolves through time under
reinvestment, and how their endogenous time evolution causes
the market to malfunction.

We show that, with realistic parameters, evolution toward
market efficiency is very slow. The expected deviations from
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efficiency are, in some sense, small, but they persist even in
the long term, and cause extended deviations from fundamen-
tal values and excess volatility (which, in extreme cases, becomes
market instability). Our study provides a simple example of how
analyzing markets in these terms and tracking market ecosys-
tems through time could give regulators and practitioners better
insight into market behavior.

Model Description
The structure of the model is schematically summarized in
Fig. 1. There are two assets, a stock and a bond. The bond
trades at a fixed price and yields r = 1% annually in the form of
coupon payments that are paid out continuously. The stock pays
a dividend D(t) at each time step that is modeled as a discrete
time-autocorrelated geometric Brownian motion, of the form

D(t) =D(t − 1) + gD(t − 1) +σD(t − 1)U (t),

U (t) =ωU (t − τ) + (1−ω2)Z (t),
[1]

where g is the average rate of dividend payments, σ is the vari-
ance, ω is the autocorrelation parameter of the process, and Z
is Gaussian noise. The auxiliary process U (t) introduces persis-
tence. We choose parameters so that one time step is roughly
equal to a day. We use estimates from market data by LeBaron
(13), taking g = 2% per year for the growth rate of the dividend
with a volatility of σ= 10% (see ref. 14, for example, for a review
of the empirical evidence on dividends). The dividend process is
positively autocorrelated through the auxiliary process U (t) with
lag τ = 1 d.

We use market clearing to set prices. The stock has a fixed
supply Q , but the excess demand E(t) for the stock by each
trading strategy varies in time. We allow the trading strategies
to take short positions and to use leverage (i.e., to borrow in
order to take a position in the stock that is larger than their
wealth). We impose a strategy-specific leverage limit λ̄. Because
we use leverage and because the strategies can have demand
functions with unusual properties, market clearing is not always
straightforward—see Materials and Methods.

The size of a trading strategy is given by its wealth W (t),
that is, the capital invested in it at any given time. In ecology,
this corresponds to the population of a species, which is also
called its abundance. Unless otherwise stated, the wealth of each
strategy varies proportional to its cumulative performance. Let-
ting πi(t) be the return of strategy i at time t , the wealth changes
according to

Wi(t + 1) = (1 + f πi(t))Wi(t). [2]

The reinvestment rate f models investor flows of capital. The
default value f = 1 corresponds to passive reinvestment, and f >
1 means that profitable strategies attract additional capital and
unprofitable strategies lose additional capital.

A trading strategy is defined by its trading signal φ(t), which
can depend on the price p(t) and other variables, such as div-
idends and past prices. We modify φ by a tanh function to

Fig. 1. The three trading strategies correspond to noise traders, value
investors and trend followers. They invest their capital in a stock and a bond.
The mixture for each strategy changes with time as strategies accumulate
wealth based on their historical performance.
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Fig. 2. The profitability of the dominant strategy in the wealth landscape.
A is a ternary plot which displays the returns achieved by the strategy with
the largest return. The axes correspond to the relative wealth invested in
each strategy. The top corner is pure trend followers, the left corner is pure
noise traders, and the right corner is pure value investors. The color indicates
the strategy with the highest returns at a given relative wealth vector w.
The regions colored in red correspond to the noise traders, blue regions
correspond to value investors, and green regions correspond to the trend
followers. The intensity of the color indicates the size of the average return.
(B) Upper shows the average returns to value investors (blue) and trend
followers (green) while holding the noise trader wealth at its equilibrium
value of 42%. Lower shows the volatility in the returns of each strategy. The
horizontal axis is the relative wealth of the trend follower (top axis) and
value investor (bottom axis).

ensure that the excess demand is bounded and differentiable. A
strategy’s excess demand for the stock is

E(t) =
W (t − 1)λ̄

p(t)

(
tanh (c ·φ(t))+

1

2

)
−S(t − 1), [3]

where S(t − 1) is the number of shares of the stock held at
the previous time step, and λ̄ is the strategy-specific leverage
limit. The parameter c> 0 determines the aggressiveness of the
response to the signal φ, and is strategy specific. When the sig-
nal of the strategy is zero, the agent is indifferent between the
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stock and the bond and splits its portfolio equally between the
two (hence the term of 1/2). The leverage λ(t) of a strategy at
any given time is p(t)S(t)/W (t) = λ̄| tanh (c ·φ(t))+ 1/2|. As
in the usual Walrasian process, p(t) is set such that aggregate
excess demand

∑
i Ei(t) over all agents i is zero.

Investment Strategies. We study three typical trading strategies,
which we call value investors, trend followers, and noise traders.
We intentionally make all strategies boundedly rational, that is,
they work from limited information, and their strategies are not
optimal. We use a representative agent hypothesis, treating each
strategy as though it were only used by a single fund; however,
these should be thought of as representing all investors using
these strategies. We now describe each strategy in turn.

Value investors. Value investors observe the dividend process
and use a model to derive the value of the stock. They seek to

hold more of the stock when it is undervalued and hold more of
the bond when the stock is overvalued. The parameters of their
model are estimated based on historical dividends.

The fundamental value V (t) of the stock at t = 0 is given as
the discounted expected future dividends,

V (0) =E

[
∞∑
t=1

D(t)

(1 + k)t

]
. [4]

The parameter k is a discount rate called the required rate of
return, with k ≥ r ; k is the sum of the risk-free rate r and a risk
premium all of the investors in our model expect for the addi-
tional risks associated with the stock. We follow ref. 15 and use
a fixed discount rate k = 2%, based on the average rate of return
implied by historical data.

Fig. 3. Profit dynamics as a function of wealth. A shows how wealth evolves, on average, through time under reinvestment. The intensity of the color
denotes the rate of change. B shows sample trajectories for a few different initial values of the wealth vector, making it clear that the trajectories are
extremely noisy due to statistical uncertainty, so that the deterministic dynamics of A are a poor approximation. The visualization displays three different
initial wealth vectors, each color coded. The marker “+” indicates the initial wealth. The trajectories with the same color follow the system for T = 200 y, and
color saturation increases with time. Starting from uniformly distributed initial conditions, C displays a density map of the asymptotic wealth distribution
after 200 y. The system is initialized at random with a uniformly distributed wealth vector and then allowed to freely evolve for 200 y. The color’s darkness
is proportional to density. D displays the one-time-step autocorrelation of price returns. The black dot is the equilibrium point from A.
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Table 1. Estimated community matrix near the equilibrium at
w = (NT = 0.43, VI = 0.34, TF = 0.23)

Gij NT, % VI, % TF, %

NT −0.89 0.89 0.82
VI 26.6 −10.6 22.4
TF 11.1 15.2 −19.3

NT, noise traders; VI, value investors; TF, trend followers.

The valuation V VI(t) used by the value investors is made by
estimating the mean growth rate g from past data using the
classical dividend discount model (16) E[D(t)] =D(0)(1 + g)t .
This ignores the autocorrelation coefficient ω, and so, in general,
V VI(t) 6=V (t).

We define the trading signal for the value investor as the dif-
ference in log prices between the estimated fundamental value
V VI(t) and the market price.

φVI(t) = log2 V
VI(t)− log2 p(t). [5]

This strategy enters into a long position when the proposed price
is lower than the estimated fundamental value and enters into a
short position when the proposed price is higher than the esti-
mated fundamental value. The use of the base two logarithm
means that the value investor employs all of its assets when the
stock is trading at half the perceived value (17).

Trend followers. Trend followers expect that historical trends
in returns continue into the short-term future. Several vari-
ants exist in the literature, including the archetypal trend fol-
lower that we use here (3, 10, 18–20). There is evidence to
suggest that trend-based investment strategies are profitable
over long time horizons, and ref. 21 argues that investors earn
a premium for the liquidity risk associated with stocks with
high momentum (momentum trading is a synonym for trend
following).

The trend-following strategy extrapolates the trend in price
between recently realized prices p(t − 1) and p(t − 2) time steps
in the past. It always buys when prices trend upward and sells
when they trend downward.

φTF(t) = log2 p(t − 1)− log2 p(t − 2). [6]

The trend followers’ demand is a decreasing function of price.
Unlike the value investor, who cannot observe autocorrelations
in dividends, the trend follower can exploit the autocorrelation
that dividends impart to prices. Because the positive autocor-
relation in market prices is, at most, ω= 0.1, we multiply the
signal by 1/ω.

Noise traders. Noise traders represent nonprofessional investors
who do not track the market closely. Their transactions are
mostly for liquidity, but they are also somewhat aware of value, so
they are slightly more likely to buy when the market is underval-
ued and slightly more likely to sell when the market is overvalued
(this is necessary so that their positions do not diverge over long
periods of time).

The signal function of our noise traders contains the product
of the value estimate V VI(t) (which is the same as for the value
investors) and a stochastic component X (t),

φNT(t) = log2 X (t)V VI(t)− log2 p(t). [7]

The noise process X (t) is a discretized Ornstein–Uhlenbeck
process, which has the form

X (t) =X (t − 1) + ρ(µ−X (t − 1)) + γε. [8]

This process reverts to the long-term mean µ= 1 with rever-
sion rate ρ= 1− 6×252√

0.5, meaning the noise has a half life
of 6 y, in accordance with the values estimated by Bouchaud
et al. (22). The variable ε is a standard normal random vari-
able, and γ= 20% is a volatility parameter, chosen so that noise
traders generate volatility in excess of the volatility of dividends,
matching the level observed in the US stock market.

The parameters of the model are summarized later (see Table
5). We have chosen them for an appropriate trade-off between
realism and conceptual interest, for example, so that each strat-
egy has a region in the wealth landscape where it is profitable. We
will see that there are a few ways in which the properties of these
strategies do not match those observed in real markets (the trend
strategy is very short term, the value investor uses somewhat high
leverage, and, at equilibrium, the noise trader has a surprisingly
low return-to-risk ratio). Nonetheless, they are realistic enough
to make our key points.

Results
Density Dependence. An ecosystem is said to have density depen-
dence if its characteristics depend on the population sizes of the
species, as is typically the case. Similarly, a market ecosystem is
density dependent if its characteristics depend on the wealths of
the strategies (both its own wealth and that of other strategies).
The toy market ecosystem that we study here is strongly density
dependent.

When the core ideas in this paper were originally introduced in
ref. 3, prices were formed using a market impact function, which
translates the aggregate trade imbalance at any time into a shift
in prices. This can be viewed as a local linearization of market
clearing. The use of a market impact function suppresses density
dependence and neglects nonlinearities that are important for
understanding market ecology.

With market clearing, there is strong density dependence.
This is evident in Fig. 2, which shows which strategy makes
the highest profits as a function of the relative size of each
of the three strategies. To control the size of each strategy,
we turn off reinvestment, and instead replenish the wealth
of each strategy at each step as needed to hold wealth con-
stant. We then systematically vary the wealth vector W =
(WNT,WVI,WTF). We somewhat arbitrarily let the total wealth
WT =WNT +WVI +WTF = 3× 108. For convenience of inter-
pretation, we plot the relative wealth wi(t) =Wi/WT . The
results shown are averages over many long runs; to avoid tran-
sients, we exclude the first 252 time steps, corresponding to one
trading year.

Roughly speaking, the profitability of the dominant strategy
divides the wealth landscape into four distinct regions. Trend
followers dominate at the bottom of the diagram, where their
wealth is small. Value investors dominate on the left side of the
diagram, where their wealth is small, and noise traders domi-
nate on the right side of the diagram, where their wealth is small.
There is an intersection point near the center where the returns
of all three strategies are the same. In addition, there is a compli-
cated region at the top of the diagram, where no single strategy
dominates. The turbulent behavior in this region comes about
because the wealth invested by trend followers is large, and the
price dynamics are unstable. We do not regard this region as
realistic, except perhaps in rare extreme market conditions.

Table 2. Estimated community matrix near
w = (NT = 0.26, VI = 0.55, TF = 0.19)

Gij NT, % VI, % TF, %

NT −0.46 0.40 0.36
VI 8.94 −0.77 −1.89
TF 6.81 6.87 −9.65

4 of 9 | PNAS
https://doi.org/10.1073/pnas.2015574118

Scholl et al.
How market ecology explains market malfunction

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
27

, 2
02

1 

https://doi.org/10.1073/pnas.2015574118


www.manaraa.com

SP
EC

IA
L

FE
A

TU
RE

EC
O

N
O

M
IC

SC
IE

N
CE

S

A quantitative snapshot of the average returns and
volatility is given in Fig. 2B, where we hold the size of the noise
traders constant at 42%, corresponding to their wealth at the
intersection point, and vary the wealth of the value investors
and trend followers. The average return to both trend followers
and value investors decreases monotonically as their wealth
increases. The volatility of the returns of both strategies, in
contrast, is a monotonic function of the wealth of the trend
followers alone—higher trend follower wealth implies higher
volatility. Although this is not shown here, the average return of
the value investors increases strongly with the wealth of the noise
traders; in contrast, the average return of the trend followers is
insensitive to it.

Adaptation and the Slow Approach to Market Efficiency. We now
investigate the dynamics of the market ecosystem. To understand
how the wealth of the strategies evolves through time, we allow
reinvestment and plot trajectories corresponding to the average
return at each wealth vector w. This is done by averaging over
many different runs. The result is shown in Fig. 3A. Most of the
wealth trajectories in the diagram evolve toward a fixed point
where the wealths of the strategies no longer change. There is
also a region at the top of the diagram where the dynamics are
more complicated (due to instabilities) and a region in the lower
left corner where the ecosystem evolves toward the boundary of
the simplex.

At the fixed point, the annual returns to the three strategies are
all equal to 2.05%, which, to an investor, is statistically indistin-
guishable from the 2% return from simply buying and holding the
stock. We will loosely refer to this fixed point as the efficient equi-
librium. We say “loosely” because the volatilities of the strategies
are 4.07% for noise traders, 6.76% for value investors, 4.62% for
trend followers, and 9.09% for a buy and hold, so that, with a
more sophisticated model of fund flows, the equilibrium might
shift slightly in favor of strategies with less risk. A common way to
measure the performance of a trading strategy is in terms of the
ratio of the mean to the standard deviation of its returns, which
is called the Sharpe ratio, S. The corresponding Sharpe ratios
(without subtracting the risk-free rate) are 0.50, 0.31, and 0.44 for
the three strategies, and 0.22 for a buy and hold. These Sharpe
ratios and their variation are reasonable numbers for investment
funds, indicating that our model ecosystem is roughly as efficient
(or inefficient) as a real market (if anything, the Sharpe ratios
are a bit low).

The large central region of initial conditions that are attracted
to the efficient equilibrium gives a misleading impression of a
smooth evolution toward a state of market efficiency. In fact, the
dynamics are noisy and stray far from the deterministic dynamics
shown in Fig. 3A. Tracking a few individual trajectories, as we
do in Fig. 3B, demonstrates that the dynamics are dominated by
noise, due to the statistical uncertainty in the performance of the
strategies. The typical trajectories bear little correspondence to
the deterministic trajectories of Fig. 3A, and the convergence to
the efficient equilibrium is weak.

To get a feeling for the asymptotic wealth distribution, we sam-
ple the space of initial wealth uniformly, simulate the ecosystem
dynamics under reinvestment with f = 1, and record the final
wealth after 200 y, as shown in Fig. 3C. The deviations from the
efficient equilibrium point are substantial, often more than 20%.
Furthermore, the evolution toward the asymptotic distribution is
exceedingly slow: Each trajectory in Fig. 3B spans 200 y of sim-
ulated time. There are substantial changes in the relative wealth
taking place over time scales that are longer than a century.

The long time scale to reach efficiency observed here matches
with the estimate made by Farmer in ref. 3. In the ideal case of
a stationary market and independent and identically distributed
(I.I.D.) normally distributed returns, the time required to detect
excess performance ∆S with a statistical significance of s stan-

dard deviations is approximately (s/∆S)2. To take an example,
a buy and hold of the S&P index has a Sharpe ratio of roughly
S = 0.5. For a strategy whose annualized Sharpe ratio is superior
by ∆S = 0.1, a 20% improvement over a buy and hold, roughly
400 y are required to confirm its superior performance with 2
SD. Furthermore, as shown in ref. 23, the approach to market
efficiency follows a power law of the form t−α, where 0≤α≤ 1.
For large times, this is much slower than an exponential. This
happens because the approach to efficiency slows down as the
market becomes more efficient. Near the efficient equilibrium,
the dynamics are dominated by the noise.

To demonstrate that statistical uncertainty is the dominant
factor determining the approach to efficiency, we did a series
of experiments that are described in detail in SI Appendix, sec-
tion 4. As the reinvestment rate f in Eq. 2 varies in the range
0.1≤ f ≤ 3, the rate of approach to the asymptotic wealth distri-
bution remains roughly the same. In contrast, varying the noise
trader volatility, which affects the statistical uncertainty in the
performance of all three strategies, has a substantial effect.

The absence of autocorrelation in price returns is an indicator
of market efficiency. Efficient price returns should have an auto-
correlation that is reasonably close to zero (close enough that
it is not possible to make statistically significant excess profits).
In Fig. 3D, we plot the one-time-step autocorrelation of returns
across the wealth landscape. There is a striking white band across
the center of the simplex, corresponding to zero autocorrela-
tion. This happens when trend followers invest about 40% of
the total wealth, thereby eliminating the autocorrelation coming
from the dividend process. The wealth of trend followers fluctu-
ates, even at very long times, and, consequently, the degree of
autocorrelation in price returns fluctuates as well.

Community Matrix. The community matrix is a tool used in ecol-
ogy to describe the pairwise effects of the population of species

Fig. 4. A survey of the trophic levels across the wealth landscape. We color
the diagram according to the increasing ordering of the trophic levels of the
three strategies, in the order (noise trader, value investor, trend follower),
as indicated in the legend. (The numbers now indicate the ordering rather
than the precise trophic level). The dominant zone where the ordering is (1,
2, 3) is colored red. In the gray region, there are cycles where the trophic lev-
els become undefined. The black dots correspond to samples of the wealth
vector after 200 y, as shown in Fig. 3C. The system spends most of its time in
the gray and red zones.

Scholl et al.
How market ecology explains market malfunction

PNAS | 5 of 9
https://doi.org/10.1073/pnas.2015574118

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
27

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015574118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015574118/-/DCSupplemental
https://doi.org/10.1073/pnas.2015574118


www.manaraa.com

A

B

C

D

Fig. 5. How ecosystem dynamics cause market malfunctions. A gives a color map of the price volatility over the wealth landscape; the volatility is low and
constant throughout the lower right part of the diagram, where the system spends most of its time, but there is a high-volatility region running across
the upper left. A sample trajectory spanning 200 y, beginning at the efficient equilibrium, is shown in black. The noise caused by statistical fluctuations in
performance causes large deviations from equilibrium and excursions into the high volatility region. B shows the volatility of this trajectory as a function of
time, plotted against the predicted volatility (see Eq. 12). C shows the actual mispricing plotted against the predicted mispricing. D shows the wealth of the
value investors and trend followers.
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j on the population growth rate of species i (24, 25). As origi-
nally pointed out by Farmer (3), who called it the gain matrix, an
analogous quantity is also useful for interpreting the behavior of
market ecosystems.

Let πi be the average return of strategy i , that is, πi =

limT→∞

(∏T
t=1 πi(t)− 1

)
1/T . The analogue of the community

matrix for market ecology is

Gij =
∂πi

∂wj
. [9]

This has units of one over time. The wealth wi(t) invested in
strategy i replaces the population size of a species. The possible
pairwise interactions between strategies can be classified accord-
ing to the sign of Gij . If both Gij and Gji are negative, then
strategies i and j are competitive; if Gij is positive and Gji is
negative, then there is a predator–prey interaction, with i as the
predator and j as the prey; and, if both Gij and Gji are positive,
then there is a mutualistic interaction (26).

Because we do not have a differentiable model for our toy mar-
ket ecosystem, we compute the community matrix numerically
using finite differences (see Materials and Methods). The com-
munity matrix is strongly density dependent. If we compute the
community matrix near the equilibrium point in the center of the
simplex, we get the result shown in Table 1.

The diagonal entries of the community matrix are all negative,
indicating that the strategies are competitive with themselves.
This means that their average returns diminish as the strategy
gets larger, causing what is called crowding in financial markets.
We already observed this in Fig. 2. Interestingly, however, the
size of the diagonal terms varies considerably, from −0.89 for
noise traders to −19.3 for trend followers. This means that we
should expect trend followers to experience crowding much more
strongly than noise traders.

All of the other entries of the community matrix are positive,
indicating mutualism. This implies that every strategy benefits
from an increase in the wealth of any of the other strategies.
While we initially found it surprising that all of the strategies
could have mutualistic interactions with each other, on reflec-
tion, this makes sense: The ecosystem is, by definition, efficient at
the equilibrium, and driving any of the strategies away from equi-
librium creates an inefficiency that provides a profit opportunity
for the other two strategies.

The community matrix is density dependent. If we compute
the community matrix at the wealth vector given in Table 2,
where the value investors are dominant, there is a shift in the
pairwise community relations. As before, all of the terms in the
row corresponding to the noise traders are small, indicating that
the noise traders are not strongly affected by other strategies, and
that they compete only weakly with themselves. This should not
be surprising—the noise traders’ strategy is mostly random, and
is less influenced by prices than the other two strategies. Value
investors, who have the majority of the wealth in this case, still
strongly benefit from an increase in the wealth of noise traders
(although less so than at the equilibrium). However, there is
now a negative (2, 3) off-diagonal term, while the opposite (3, 2)
term remains positive. In other words, returns to value investors
drop if the wealth of trend followers increases, but not vice
versa, implying that trend followers now have a predator–prey
relationship with value investors. Other variations in commu-
nity relationships can be found at different points in the wealth
landscape, illustrating density dependence.

The Lotka–Volterra equations, which describe how the pop-
ulations in an idealized predator–prey system evolve through
time, are perhaps the most famous equations in population biol-
ogy. Their surprising result is that, at some parameter values,
they have solutions that oscillate indefinitely. Using the assump-

tion of no density dependence, Farmer derived Lotka–Volterra
equations for market ecology (3). Our results here indicate that
the density dependence in this system is so strong that simple
Lotka–Volterra equations are a poor approximation, at least for
this system. The existence of oscillating solutions in financial
ecosystems remains an open question.

Food Webs and Trophic Level. The food web provides an impor-
tant conceptual framework for understanding the interactions
between species. If lions eat zebras, and zebras eat grass, then
the population of lions is strongly affected by the density of grass,
and, similarly, the density of grass depends on the population of
lions, even though lions have no direct interactions with grass. The
trophic level of a species is, by definition, one level higher than
what it eats, so, in this idealized system, grass has trophic level one,
zebras have trophic level two, and lions have trophic level three.

The existence of animals with more-complicated diets, such as
omnivores and detritivores, means that real food webs are never
this simple. If we let Aij be the share of species j in the diet of
species i , then the trophic level Ti of species i can be computed
by the relation

Ti = 1 +
∑

j AijTj . [10]

The resulting trophic levels are typically not integers, but they
still provide a useful way to think about the role that a given
species plays in the ecosystem.

We can also compute trophic levels for the strategies in an
ecosystem. We define the analogous quantity Aij as the fraction
of the returns of strategy i that can be attributed to the pres-
ence of strategy j . We do this by simply comparing the returns of
strategy i at wealth W to those when strategy j is removed, that
is, when Wj = 0 but all of the other wealths remain the same. In
mathematical terms,

Aij =
max [0,πi(W1, ...,Wj , ...,WN )−πi(W1, ..., 0, ...,WN )]∑

kmax[0,πi(W1, ...,Wk , ...,WN)−πi(W1, ..., 0, ...,WN)]
,

[11]

and Aij = 0 when the denominator is zero. Note also that, in
order for the diagonal entries Aii to be defined, we can not set
wealth to zero but set it to the smallest possible value, 1/256,
which is determined by the simulation grid size.

Eqs. 10 and 11 allow us to compute trophic levels. At the effi-
cient equilibrium, the trophic levels are (noise trader = 1.00,
value investor = 2.00, trend follower = 2.99). The proximity
to integer values is because there are only three strategies with
similar wealth levels: The noise trader cannot profit from either
the value investor or the trend follower, the value investor prof-
its from the noise trader, and the trend follower profits just
a little from the noise trader but quite a lot from the value
investor—see the discussion in SI Appendix. However, away from
the equilibrium, where the wealths of the three strategies are
substantially unequal, this changes. In order to better under-
stand the density dependence, we compute trophic levels at

Table 3. Multivariate regressions with volatility and mispricing
as dependent variables, and the funds’ wealth as independent
variables

Independent variable Coefficient t statistic

Volatility, R2 = 0.79; 50,397 observations
Noise trader 2.4 10
Value investor −68 −249
Trend follower 107 169
Mispricing, R2 = 0.33; 50,397 observations
Noise trader −0.15 −18
Value investor −1.02 −107
Trend follower 1.5 69
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Table 4. Details of the balance sheet items used by all funds

Assets Liabilities

Equity
Cash C Capital K

Debt
Margin M Loans L
trading securities S+ borrowed securities S−

All securities use the most recent market value in valuation.

each point in the wealth landscape. For three strategies, there
are 3! = 6 possible orderings of the trophic levels. We display
the ordering of the trophic levels across the wealth landscape
in Fig. 4.

The computation of trophic levels is complicated by the fact
that, for some wealth vectors, there are cycles in the food web.
For example, for w = (0.05, 0.15, 0.80), value investors exploit
noise traders (who cause reversion to fundamental value), trend
followers exploit value investors (who induce autocorrelations),
and noise traders exploit trend followers (who generate excess
volatility), to complete a cycle. When this happens, Eq. 9 does
not converge, and the trophic levels become undefined. Cycles in
the trophic web are not unique to markets—they can also occur
in biology, for example, due to cannibalism or detritovores.

A comparison of Figs. 4 and 3C makes it clear that, at long
times (after transients have died out), the system divides its time
between the region in which the trophic levels are ordered as
(noise trader, value investor, trend follower), as they are at the
equilibrium point, and the region where there are cycles, where
the trophic levels are undefined.

How Ecosystem Dynamics Cause Market Malfunction. The wealth
dynamics of the market ecosystem help explain why the mar-
ket malfunctions and illuminate the origins of excess volatility
and mispricing, that is, deviations of prices from fundamental
values. Both in real markets (2) and in the agent-based models
mentioned earlier (including our model here), volatility and mis-
pricings change endogenously with time—there are eras where
they are large and eras where they are small. Volatility varies
intermittently, with periods of low volatility punctuated by bursts
of high volatility, called clustered volatility. The standard expla-
nations for clustered volatility are fluctuating agent populations
(9, 10, 27) and leverage (28). We focus here on the first explana-
tion; while we also observe that clustered volatility increases with
increasing leverage, we have not investigated this, in detail, here.

Fig. 5A presents the variation of the volatility across the
wealth landscape. The landscape can roughly be divided into two
regions. On the lower right, there is a flat “low-volatility plain”
occupying most of the landscape. On the upper left, there is a
high-volatility region, with a sharp boundary between the two.
As we will now show, excursions into the high-volatility region
cause clustered volatility. A similar story holds for mispricing.

Fig. 5A shows a sample trajectory that begins at the efficient
equilibrium and spans 200 y. This sample is representative of
trajectories that fluctuate around the equilibrium point indefi-
nitely. We choose a 200-y time span to show the scale at which
spikes in volatility and mispricing occur. The statistical fluctu-
ations in the performance of the three strategies act as noise,
causing large excursions away from equilibrium. The trajectory
mostly remains on the volatility plain, but there are several epochs
where it ventures into the high-volatility region, causing bursts of
high volatility.

The wealth dynamics have strong explanatory power for both
mispricing and volatility. This is illustrated in Table 3, where we
perform regressions of the strategies’ wealth against volatility
using daily values for the time series shown in Fig. 5A. For volatil-
ity, R2 = 0.79, and, for mispricing, R2 = 0.33. In both cases, the

value investor’s wealth and the trend follower’s wealth have large
coefficients (in absolute value), and the fit is overwhelmingly sta-
tistically significant. The noise trader is also highly statistically
significant, but the coefficients and the t statistics are more than
an order of magnitude smaller. In Fig. 5 B and C, we compare
a time series of the predicted volatility and predicted mispricing
against the actual values. The predictions are very good.

ν̂=−68wvi + 107wtf + 2.4wnt

m̂ =−1.02wvi + 1.5wtf − 0.15wnt
. [12]

Note that, in both cases, the coefficient for trend followers is
positive, indicating that they drive instabilities, and the coeffi-
cient for value investors is negative, indicating their stabilizing
influence.

Nonetheless, due to their effect on the population of value
investors, the net effect of the trend followers on market mal-
functions is not obvious. In Fig. 5D, we plot the wealth of value
investors and trend followers. The strong mutualism predicted
by the community matrix is clearly evident from the fact that the
wealth of trend followers and value investors rise and fall together.
However, their dynamics are quite different—there are several
precipitous drops in the value investors’ wealth, whereas the
trend followers tend to take more-gradual losses. As predicted,
the highest-volatility episodes happen when the value investors’
wealth drops sharply while the trend followers’ wealth is high.

Discussion
Our analysis here demonstrates how understanding fluctuations
of the wealth of the strategies in the ecosystem can help us pre-
dict market malfunctions such as mispricings and endogenously
generated clustered volatility. The toy model that we study here
is simple and highly stylized, but it illustrates how one can import
ideas from ecology to better understand financial markets. Our
analysis of this model illustrates several properties of market
ecosystems that we hypothesize are likely to be true in more
general settings.

Concepts from ecology give important insights into how devi-
ations from market efficiency occur and how they affect prices.
While the market may be close to efficiency in the sense that the
excess returns to any given strategy are small, nonetheless, there
can be substantial deviations in the wealth of different strategies,
that can cause excess volatility and market instability.

Market ecology is a complement rather than a substitute for
the theory of market efficiency. There are circumstances, such
as pricing options, where market efficiency is a useful hypothe-
sis. Market ecology, in contrast, provides insight into how and
why markets deviate from efficiency, and what the consequences
of this are. It can be used to explain the time dependence
in the returns of trading strategies, and, in some cases, it can
be used to explain market malfunctions. One of our main

Table 5. List of the model parameters and their values

Parameter Value Description

r 1% annual Risk-free rate
g 1% annual Dividend growth rate
k 2% annual Cost of equity
σ 10% annual dividend growth Volatility
ω 0.1 Dividend autocorrelation parameter
τ 1 d Dividend autocorrelation lag
f 1 Reinvestment rate

ρ 1− 6·252

√
1
2 Noise trader mean reversion rate

σNT 20% annual Noise trader volatility
λ̄NT, λ̄VI, λ̄TF 1, 8, 1 Leverage limit
cNT, cVI, cTF 5, 10, 4 Signal scale
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innovations here is to demonstrate how to compute the com-
munity matrix and the trophic web, which provide insight
into the interactions of strategies. Surprisingly, at the efficient
equilibrium, we find that all three strategies have mutualistic
relationships to one another.

There are, so far, only a few examples of empirical studies of
market ecology (29, 30). This is because such a study requires
counterparty identifiers on transactions in order to know who
traded with whom. Trying to study a market ecosystem without
such data is like trying to study a biological ecosystem in which
one can observe that an animal ate another animal, without
any information about the types of animals involved. Unfortu-
nately, for markets, such data are difficult for most researchers
to obtain.

Regulators potentially have access to the balance sheets of all
market participants, which can allow them to track, in detail,
the ecology of the markets they regulate. Ideas such as those
presented here could provide valuable insight into when mar-
kets are in danger of failure, and make it possible to construct
models for the ecological effect of innovations, for example, the
introduction of new types of assets such as mortgage-backed
securities.

One of our most striking results is that the approach to
efficiency is highly uncertain and exceedingly slow. As already
pointed out, this should be obvious from a straightforward sta-
tistical analysis, but it is not widely appreciated. Our results
demonstrate this dramatically, and they indicate that, even
in the long term, we should expect large deviations from
efficiency.

There are many possible extensions to this work. An obvi-
ous follow-up is to explore a larger space of strategies, or
to let new strategies evolve in an open-ended way through
time. Does the process of strategy innovation tend to stabi-
lize or destabilize markets? Another follow-up is to construct a
model that is empirically validated against data with counterparty
identifiers. Our analysis here provides concepts and methods
that could be used to interpret the behavior of real world
examples.

Materials and Methods
Accounting and Balance Sheets. The funds in our model use a stylized bal-
ance sheet that is presented in Table 4. Funds are endowed with equity
capital K = W(0), in the form of cash C in dollars and shares of trading
securities S. When S> 0, the fund holds this amount of securities, and when

S< 0, it has borrowed this amount from other market participants, to cre-
ate a short position. In order to guarantee that the short-selling fund can
return the borrowed securities to the lender at a later time, the fund sets
aside a margin amount M equal to the current market value of the bor-
rowings, in the form of cash. The funds can use leverage, meaning using
borrowed funds to purchase additional risky assets, by borrowing cash L.
Public regulatory filings of US institutional fund managers indicate common
leverage ratios between 1 and 10.† The interest rate that applies to cash
holdings, loans, and margin is the same as the risk-free rate from holding
the bond.

Wealth is calculated as W(t) = C(t) + S(t)p(t)− L(t). A fund can only vio-
late its leverage constraint when the proportion of risky assets changes
faster than the amount of equity capital. This can happen due to losses.
We require that all funds meet the solvency condition W(t)> 0. The simu-
lation ends when one or more funds are insolvent. Table 5 lists the default
parameters.

Software. The simulation in this paper builds on the Economic Simulation
Library.‡

Data Availability. The model and code to run the experiments have been
deposited in GitHub (https://github.com/INET-Complexity/market-ecology).
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